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Abstract

An accurate and efficient method was developed for computing the resonant frequencies of

microstrip resonators.
tal results.

Introduction

The microstrip and the disk resonators
are useful integrated circuit components at
microwave- and millimeter-wave frequencies.
The analysis of such structures, however, has
been undertaken under various approxima-
tions.™? Since the design formulas so
obtained are not very reliable, the designers
of such circuit components are often forced to
use cut-and-try methods to obtain desired
resonant frequencies.

In this paper, a new method, based on the
rigorous full-wave theory, will be reported
for analyzing a rectangular microstrip
resonator. The derivation of the character-
istic equation for resonant frequency is
carried out using Galerkin's method applied in
the spectral domain as opposed to the conven-
tional space domain analysis. The resonant
frequencies are obtained by numerically
solving the characteristic equation.

Method of Analysis

The microstrip resonator to be analyzed
is shown in Fig. 1. A rectangular strip of
width 2w and length 22 is placed on the sub-
strate which is, in turn, placed in a shield
case, It is assumed that the thickness of
the strip is negligible and that all the
media are lossless. The shielding case and

the substrate are assumed to extend to
z = too,

In the present structure, the fields,
which are the superposition of TE (to z) and
TM (to z) fields, can be expressed in terms
of two types of scalar potentials ¢(x,y,z) for
TM and V(x,y,z) for TE fields. 1Instead of
solving the boundary value problems associated
with the structure in the space domain, the
analytical process will be carried out in the
spectral or Fourier transform domain. To
this end let us define the Fourier transform
of potential ¢i via
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and a similar equation for ¢ (x,y,z), where

i = 1, 2 designates the substrate or the air

region, and ﬁn = (n - 1/2)n/a for E, even -

H, odd (in x) modes and kn = nn/a for E, odd -

Hz even (in x) modes.

Imposing the boundary and continuity con-
ditions at y = 0,d and d + h in the spectral
domain, one obtains after some mathematical
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The numerical data were compared with other theoretical and experimen-
The agreement of the numerical results with experimental data was

extremely good.

manipulations:
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and 3x and J, are the transforms of induced
strip current components J_ and J E, and
E, are proportional to the transforms of
electric fields at y = d. Equations (2) are
algebraic equations as opposed to the coupled
integral equations appearing in the conven-
tional space domain analysis.

Galerkin's method_ is then applied to
Equation (2). Jy and J, are_first expressed
in terms of basis functions Jyy and Jyzp with
unknown weight coefficients cp and dy. .
Substituting these expressions for Jy and J,
in Equation (2) and taking inner products
of the resulting equations with J_. and J_.,
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Although Equation (2) contains four unknowns
Jg> J,, Ex and E,, note that the two latter
unknowns have been eliminated in the deriva-
tion of Equation (4) via the application of
Parseval's relation, because the inverse
transforms of jxm and ﬁx are nonzero only in
the complementary regions in the xz plane at

y = d and because the same argument holds for

J and E .
zZm z

The resonant frequency is obtained from
the value of kg that makes the determinant of
the coefficient matrix of Equation (4) zero.
The numerical computation has been carried out
for the dominant mode by letting M = N = 1 and
choosing Jz1 and jxl to be the transforms of
Jp1 = J1(x)Jo(2) and Jyq = J3(X)J4(z). The
forms of J; to J, are plotted in Fig. 2. The
infinite summations of infinite integrals can
be evaluated efficiently since the integrands
decrease as (f{rlw)‘3 and (B8R)~°.

The solution in the present method can be
systematically improved by increasing the
number of basis functions M and N and solving
a larger matrix. The numerical efficiency is
superior to many conventional space domain
analyses since in the present method the
algebraic equations rather than integral
equations are solved.

Results and Discussion

The numerical computation based on the
present theory has been carried out at the
University of Illinois using a CDC G-20
computer which is several times slower than
the IBM 360/75. Typical computation time was
about 200 seconds per structure. An example
of the results is plotted in Fig. 3 and
compared with other theoretical and experimen-
tal data. Other theoretical results are based
on the open-ended quasi-TEM and parallel-plate

transmission line models. The latter is of
width 2w and thickness d, has magnetic side
walls, and is filled with medium of e,. 1In
both of these approximation models, the
resonant frequency was computed from the
length 2(% + A2) where AL = 0.3d is the
hypothetical extension which accounts for the
end effects.

The experiments have been conducted at
the Bell Laboratories using the 0.254 mm thick
strip. The loaded Q of the resonant circuit
was around 1500. As seen from Fig. 3, the
agreement between the experimental data and
the numerical results by the present method
is extremely good. Table 1 shows that the
agreement 1s even better if the loaded Q is
increased.

Conclusions

A new efficient method based on the
rigorous full-wave analysis has been developed
for computing the resonant frequency of
microstrip resonators. Numerical results
agree extremely well with experimental data.
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Fig. 1. End view and

TABLE 1. RESONANT FREQUERCY VS. LOADED Q
(2% = 10 cm resonator)
Loaded Q Resonant Frequency (MHz)
37 708.0
MICROSTRIP
RESONATOR 106 730.6
466 742.,3
I 688 743.0
h 1509 746.0
'»2w-— [ 1735 746.4
2334 747.0
N 5 { 10000 753.0%
p Ty €y My d
{ Present theory 752.4
2a * Extrapolated value.
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top view of microstrip resonator. Fig. 2. Forms of current components used for the
resonance calculation of dominant mode.
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Fig. 3. Resonant frequency vs. the length of the resonator.
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