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Abstract

An accurate and efficient method was developed for computing the resonant frequencies of

microstrip resonators. The numerical data were compared with other theoretical and experimen-

tal results. The agreement of the numerical results with experimental data was extremely good,

Introduction

The microstrip and the disk resonators

are useful integrated circuit components at

microwave- and millimeter-wave frequencies.
The analysis of such structures, however, has

been undertaken under various approxima-

tions.1Z2 Since the design formulas so
obtained are not very reliable, the designers

of such circuit components are often forced to

use cut-and-try methods to obtain desired

resonant frequencies.

In this paper, a new method, based on the
rigorous full–wave theory, will be reported
for analyzing a rectangular microstrip
resonator. The derivation of the character-
istic equation for resonant frequency is

carried out using Galerkin’s method applied in

the spectral domain as opposed to the conven-

tional space domain analysis. The resonant

frequencies are obtained by numerically

solving the characteristic equation.

Method of Analysis

The microstrip resonator to be analyzed
is shoyn in Fig. 1. A rectangular atrip of
width 2W and length 2! is placed on the sub-
strate which is, in turn, placed in a shield
case. It is assumed that the thickness of
the strip is negligible and that all the

media are lossless. The shielding case and

the substrate are assumed to extend to
.z = fm.

In the present structure, the fields,

which are the superposition of TE (to z) and
TM (to z) fields, can be expressed in terms
of two types of scalar potentials @(x,y,z) for
TM and ~(x,y,z) for TE fields. Instead of
solving the boundary value problems associated
with the structure in the space domain, the
analytical process will be carried ou~ in the
spectral or Fourier transform domain. To
this end let us define the Fourier transform
of potential $. via
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Imposing the boundary and continuity con-
ditions at y = O,d and d + h in the spectral
domain, one obtains after some mathematical

manipulations :

~11(n,6,kO)~x(n, B)

+ 612(n,6,ko)~z(n,6) = ~z(n,6)

~21(n, f3,kO)~x(n,6)

~22(n, B,kO)~z(n,B) = ~x(n,B)
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‘o
= free–space wavenumber (3)

and 5X and 5Z are the transforms of induced
strip current components J and J . kz and

Ex are proportional to thextransf~rms of
electric fields at y = d. Equations (2) are

algebraic equations as opposed to the coupled
integral equations appearing in the conven-
tional space domain analysis.

Galerkin’ s-method-is then applied to
Equation (2). Jx and Jz are-first expressed

in terms of basis functions Jxm and Jzm with
unknown weight coefficients cm and ~m.

Substituting these expressiona for Jx and ~z

in Equation (2) and taking inne: products
of the resulting equations with Jxi and jzi,
one obtains

~ K?’l)Cm+ ~ K[~’2)dm= O ,
m=l Im m. 1
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~lth~ugh-Equati~n (2) contains four unknowns
J Jz, Ex and Ez,x, note that the two latter
unknowns have been eliminated in the deriva-

tion of Equation (4) via the application of
Parseval’s relation, because the inverse

transforms of ~xm and ~x are nonzero only in

the complementary regions in the xz plane at

Y = d an~ because the same argument holds for
J Zm and E

z“

The resonant frequency is obtained from

the value of ko that makes the determinant of

the coefficient matrix of Equation (4) zero.
The numerical computation has been carried out

for the d~minant ~ode by letting M = N = 1 and
choosing Jzl and JXI. to be the transforms of

Jzl = J1(x)J2(z) and JX1 = J3(x)J4(z). The
forms of J1 to J4 are plotted in Fig. 2. The
infinite summations of infinite integrals can

be evaluated efficiently since the integrands
decrease as (~nw)-3 and (9!,)-3.

The solution in the present method can be

systematically improved by increasing the
number of basis functions M and N and solving
a larger matrix. The numerical efficiency is

superior to many conventional space domain

analyses since in the present method the

algebraic equations rather than integral
equations are solved.

Results and Discussion

The numerical computation based on the
present theory has been carried out at the

University of Illinois using a CDC G-20
computer which is several times slower than
the IBM 360/75. Typical computation time was
about 200 seconds per structure. An example

of the results is plotted in Fig. 3 and
compared with other theoretical and experimen-

tal data. Other theoretical results are based
on the open-ended quasi-TEM and parallel-plate

transmission line models. The latter is of
width 2W and thickness d, has magnetic side

walls, and is filled with medium of Er. In
both of these approximation models, the

resonant frequency was computed from the

length 2(!L + AQ) where A!?, = 0.3d is the

hypothetica14extension which accounts for the
end effects.

The experiments have been conducted at

the Bell Laboratories using the 0.254 mm thick
strip. The loaded Q of the resonant circuit

was around 1500. As seen from Fig. 3, the
agreement between the experimental data and
the numerical results by the present method
is extremely good. Table 1 shows that the
agreement is even better if the loaded Q is
increased.

Conclusions

A new efficient method based on the
rigorous full-wave analysis has been developed
for computing the resonant frequency of

microstrip resonators. Numerical results
agree extremely well with experimental data.
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TABLE 1. RESONANT FREQUEigCY vs. LOADED Q
(2! = 10 cm resonator)

Loaded Q Resonant Frequency (MHz)

37
106
466
688

1509
1735
2334

10000

Present theory

* Extrapolated value.

4

708.0
730.6
742,3
743.0
746.0
746.4
747.0
753.0*

752.4

l.rx

3 ~sinv

+
Wx

Fig. 1. End view and top view of microstrip resonator. Fig. 2. Forms of current components used for the

900 -\

z

G
z 800 -

\
w

2
w
a
L

1-
Z

d

h

0

w

‘r

pr=loo

— THIS THEORY

------ QUASI-TEM APPROXIMATION
—-— PARALLEL PLATE APPROXIMATION
xx EXPERIMENTS

resonance calculation of dominant mode.
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Fig. 3. Resonant frequency vs. the length of the resonator,
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